Learning CSS
Syntax

I f you look at a style sheet and think you’ll never get the
hang of it, remember how you felt when you looked at
HTML for the first time. Now you have no fear of it because
you understand the rules; you know that even if you see an
element you’ve never seen before, you can figure it out. CSS
isn’t any more difficult. It has a clear set of rules that, unlike
the set of rules for HTML, fits into one chapter. To help you
along, a complete list of all the properties you can use in CSS
is in Appendix E.

By the time you finish this chapter, you'll know the syntax

of CSS, how CSS differs from HTML, and how to define and
group CSS properties. You learn some shortcuts so your prop-
erty definitions won’t be quite as verbose as the example in
the previous chapter. You also learn about the box-formatting
model CSS uses and about inheritance, which is why you don’t
need to redefine every property for every element. You also
learn about defining classes and IDs, which enable you to add
variety to different instances of the same element on the same
page. Finally, you see the DIV and SPAN elements in action.

Anatomy of a Style Sheet

CSS has its own vocabulary. To understand what goes where
in a style sheet, you need to understand what each item on
the style sheet is called. A style sheet is composed of rules.
Thisis arule:

P {
text-indent: 2cm;
color: black;
padding-top: .25in;

CH P R
e
O O O O

In This Chapter

Anatomy of a
style sheet

Differences between
CSS and HTML
syntax

Defining properties

Grouping properties

Property definition
shortcuts

Box formatting:
the CSS formatting
model

Understanding
inheritance

Defining classes
Pseudo-classes
Defining IDs

Grouping elements
with DIV and SPAN

Adding comments to
your style sheet

o 0O O O

298 Partlv O Enhancing Presentation with Cascading Style Sheets

In the previous example, P is the selector. The selector could just as easily have
been P.special, or P#123. A selector indicates to which elements, which class of
elements, or which IDs of elements the rule applies.

A rule is made up of a selector with one or more declarations. Each of the three
lines under the selector is a declaration. A declaration is composed of a property
and one or more values. The property is separated from the value by a colon. Each
declaration ends with a semicolon. All the declarations are listed within curly
braces ({}).

Differences Between CSS and HTML Syntax

When learning HTML, you learned HTML has elements and that elements have
attributes. CSS has selectors, which you should recognize, because they can be the
same as the elements you use in HTML. In CSS, however, instead of the selectors
having attributes, they have properties. The properties of CSS selectors, just like
the attributes of HTML elements, have values.

Here is an example of an HTML element with one attribute:

<BODY dir="1tr">
This is my very short page.
</BODY>

and this is an example of a CSS selector with one declaration (property-value pair):

BODY {
color: white;

}

You can see that, just like an HTML element definition, the CSS selector has the ele-
ment name in it. This is where the similarities end, though. In CSS, there are no
angle brackets (<>). Instead, a CSS rule has curly braces around the declaration or
declarations. The CSS selector name is not enclosed with any kind of markings.

There are no start or end tags, and no content. The reason for this should be obvi-
ous: CSS documents don’t have anything rendered. Instead, they just have informa-
tion about what is rendered in the HTML document. CSS documents have properties
that describe how different parts of the element will be rendered. These properties
have values, just like attributes in HTML have values. The attribute-value pair in
HTML looks like this:

colspan="3"
In CSS, a property-value pair, which is called a declaration, looks like this:

color: white;

Chapter 26 0 Learning CSS Syntax 299

The three differences between defining attribute-value pairs and defining property-
value pairs are as follows:

1. Property-value pairs use a colon instead of an equal sign.

2. In CSS, double quotation marks do not enclose the value (unless the value is
multiple words, as in a font name).

3. A semicolon follows the property-value pair.

Once you get used to those differences, you’ll write declarations in CSS as deftly as
you write attributes in HTML.

Defining Properties

CSS is flexible. You can define a selector with one declaration or a selector with
many declarations. You use the same syntax either way. The basic outline of a CSS
rule is as follows:

SELECTOR-NAME {
property: value; /* declaration */
property: value;
property: value;

}

If a value has multiple words, the value needs to be enclosed in double quotation
marks.

Here is an example of a style sheet with two rules:

BODY {
font-family: "Times New Roman",
"Times Roman",
serif;
color: black;
background: white;
margin-left: .5in;
margin-right: .5in;

text-indent: .5in;
margin-top: .25in;
}

All it does is set the body of the document to have a white background with left and
right margins of a half inch. It also sets the text to be black. The font-family property
tells the browser to use the first font in the list that it finds on the client computer.
Notice multiword font names, such as Book Antiqua and Times New Roman, each

300 PartIlv O Enhancing Presentation with Cascading Style Sheets

have double quotation marks around them. The last name in the list is a font type,
rather than a specific font. If neither of the first two fonts are on the client computer,
it says, use any serif font. This style sheet also formats paragraphs to have an inden-
tation on the first line of paragraphs of a half inch, and a top margin of a quarter
inch. This means a quarter inch of white space will be between paragraphs.

Grouping Properties

Here’s another style sheet that defines the font family for headings:

H1 {
font-family: Helvetica,
Arial,
sans-serif;
}
HZ |
font-family: Helvetica,
Arial,
sans-serif;
1
H3 {

font-family: Helvetica,
Arial,
sans-serif;

}

What it says is headings H1, H2, and H3 should use Helvetica, if it is available; Arial,
if Helvetica is not available; and any sans-serif font, if neither Helvetica nor Arial are
available. To say all this takes a lot of space, though.

Fortunately, a more concise way exists. You can group property definitions by plac-
ing the element names into a comma-delimited list as follows:

H1, H2, H3 {
font-family: Helvetica,
Arial,
sans-serif;

}

Using this technique of grouping elements is a good way to save space, increase
readability, and reduce the possibility of introducing errors.

Chapter 26 U Learning CSS Ssyntax 3071

Property Definition Shortcuts

You can define a lot of properties for fonts, as this style-sheet excerpt demonstrates:

H3 {
font-weight: bold;
font-size: lépt;
line-height: 20pt;
font-family: "Times New Roman";
font-variant: normal;
font-style: italic;

1

Fortunately, you can string this all into one property, called font, which shortens
the definition considerably.

H3 {
}

font: bold 1lé6pt/20pt "Times New Roman" normal italic;

Once you get used to the shortcut, you’ll never use the verbose definition again.

Box Formatting: The CSS Formatting Model

CSS uses a clever metaphor for helping you specify containers (block-level ele-
ments) on your page: the box. When you define formatting for your block-level ele-
ments —whether they be paragraphs, blockquotes, lists, images, or whatever —for
purposes of CSS, you are defining formatting for a box. It doesn’t care what is in the
box; it just wants to format the box.

Box dimensions

The first thing the browser does is render the block-level element to determine
what the physical dimensions of the element are, given the font selected for the ele-
ment, the contents of the element, and any other internal formatting instructions
supplied by the style sheet. Then the browser looks at the padding, the border, and
the margins of the element to determine the space it actually requires on the page.

302 PartIlv O Enhancing Presentation with Cascading Style Sheets

element

padding

border

margin

Padding is the distance between the outside edges of the element and the border.
The border is a line or ridge. The margin is the distance between the border and the
outer box of the next container. How you define the padding, border, and margin is
described in detail in the following sections.

Padding

You don’t need to define any padding, but if you are going to define a border, then
you probably want to define padding so your element doesn’t look too crowded.
The default for an element is no padding. Figure 26-1 shows the same table with
and without padding. You can see the one without padding looks crowded.

B F- TR ch 2 biml - Micenenll nsimel Esploom HEE
Br E# Yew Go Fpoies e | & |
e - -

Back. | Laop Aehesh Home & arch |
ki [[#) FARTRLAcha hind =
- |

Cell 1/Cel 2 Celll Cel 2

Cell 3 [Cell &

Cell3 Cell 4
- |

T Lood imiaret 2o

Figure 26-1: Tables with and without
padding

Chapter 26 0 Learning CSS Syntax 303

Five properties are associated with padding. They are as follows:

1. padding, which gives the same padding on all sides
2. padding-top

3. padding-right

4. padding-bottom

5. padding-left

Get used to seeing the -top, -right, -bottom, and -left additions to property names.
This is how all box-related properties are specified.

Suppose you want to define your paragraphs to have padding on the top, the left,
and the right; you could use the following style sheet:

P {
padding-top: .5in;
padding-right: .5in;
padding-left: .5in;
}

Or you could use shorthand to write out the padding properties as follows:

P {
padding: .5in .5in 0in .5in;
}

You can always string the top, right, bottom, and left properties together in that
order. The same shorthand works for margins and borders. Notice no commas are
between the items in the list.

Border

The default is to have no border on elements. You can define a border in two differ-
ent ways. Either you can define the width, color and style of the border, by side, or
you can define the width, color, and style for the box individually. Two examples
follow:

BLOCKQUOTE {
border-width: 1pt Ipt Opt 1pt;
border-color: black;
border-style: solid;

304 Part IV O Enhancing Presentation with Cascading Style Sheets

The previous example creates a black, solid border for the top, right, and left sides
of the list.

BLOCKQUOTE {
border-top: 1pt solid black;
border-right: 1pt solid black;
border-left: 1pt solid black;
}

Both these examples create the same border. The border is inserted between the
padding, if there is any, and the margin, if there is any. Valid values for border style
are: none, dotted, dashed, solid, double, groove, ridge, inset, and outset.

Or, if you want to create a border that is the same on all four sides, you can use the
border property:

BLOCKQUOTE {
border: 1pt solid black;
}

Margins

Margins create white space outside of the border. Notice in Figure 26-1 that the two
tables are immediately adjacent to each other. This is because neither one has mar-
gins. Margins are created with the margin, margin-top, margin-right, margin-bottom,
and margin-left properties. They work exactly the same as the padding property.

Understanding Inheritance

If you define a background color for the BODY of your document, you don’t have
to define the same background color for each P element. Why not? Inheritance.
Elements within containers inherit characteristics of the containers in which they
exist. A paragraph is a container, but it is also within a container —the BODY ele-
ment. If you have an italicized word in your paragraph, you can expect that word
to inherit the font, text color, text size, line spacing, and so forth of the paragraph
(except it will be italicized); you can also expect the paragraph to inherit a few
things from the BODY, such as background color, padding, margins, and anything
else the P element doesn’t specifically specify.

Inheritance is great. Inheritance enables you to define formatting only at the highest
level. The formatting you define trickles down to the lower-level elements. An aware-
ness of inheritance can keep you from specifying every property at every level.

Chapter 26 U Learning CSS syntax 305

Defining Classes

Classes are how you customize elements in your page. With classes, you can define
more than one look for an element in your style sheet and then, in your page, you
say which look you want to use. Classes are defined in your style sheet using the
following notation:

P.first {
font: bold 12pt/1l4pt "Times New Roman";
}

P.second {
font: normal 12pt/12pt "Times New Roman";
}

To use these classes in your page, refer to them as follows:

<P class="first">This is a first-class paragraph.</P>
<P class="second">This is a second-class paragraph.</P>

Note the first class of P inherits all the formatting of P that it doesn’t specifically
override. The second class of P also inherits all the formatting of P that it doesn’t
specifically override. Classes first and second are not related to each other except
they are both classes of the P element. You can make up your own names for
classes.

Pseudo-Classes

When you are looking at a page and have already clicked one or more of the links
on the page, you might notice the links you have already clicked are a different
color from the links you have not yet clicked. You can define what you want those
colors to be using some of the available pseudo-classes in style sheets. Even though
pseudo means fake in Greek, these aren’t really fake classes —they’re predefined
classes that already mean something to the browser. Pseudo-classes enable format-
ting based on characteristics other than name, attributes, or content. You can
define pseudo-classes for three different types of links:

1. A:link for unvisited links
2. Auwvisited for visited links
3. A:active for the active link (that is, the link you are currently clicking)

If you want to add a regular class to the A element, you define the selector as
A.first-class:1ink. Consider the following example:

A:link {
color: red;

306 PartIv O Enhancing Presentation with Cascading Style Sheets

}
A:visited {

color: blue;
}

A:active
color: green;
}
A.special:Tink {
color: #FF33FF; /* fuchsia */
}

This style sheet has four rules. The first three define the colors of unvisited links,
visited links, and active links. The last one will only be used when the class is speci-
fied as special; it specifies the color of unvisited links.

Defining IDs

You won't use IDs nearly as often as you use classes, but it’s nice to know they are
there if you need them. IDs are like classes, except they are not necessarily associ-
ated with elements. Isn’t this contrary to the HTML 4 Way? Yes, but it’s there if you
need it. IDs are defined as follows:

fwide {
letter-spacing: .4dem;
}

And used as follows:

<H1 id="wide">This is a wide heading</H1>
<P id="wide">This is a paragraph of widely spaced text.</P>

As you can see, the ID wide can be used with any element. It is recommended you
use classes rather than IDs.

Grouping Elements with DIV and SPAN

In Chapters 16 and 17, you learned about using the DIV and SPAN elements to group
block-level elements and inline elements, respectively. Now you can finally see how
this works with style sheets. Consider the following style-sheet rules:

DIV.important {
background: red;
font: bold 14pt/18pt Helvetica;

Chapter 26 U Learning CSS Ssyntax 307

SPAN.incidental {

font: normal 8pt/8pt Helvetica;
background: gray;
}

You can use them as follows:

<DIV class="important"><P>This is one very important
paragraph.</P>

<TABLE>

...table contents...

</TABLE>

<P>This is another important paragraph.</P></DIV>

<P>This is somewhat important. And
this is really incidental. But you might want to
remember this fact.</P>

This creates two paragraphs with a table between them that have a background
color of red and 14pt bold Helvetica text. Following this mess is another paragraph
with formatting inherited from the BODY element, but the middle sentence has gray
8 pt Helvetica text.

Comments in Style Sheets

Adding comments to your style sheets, just as you add comments to your HTML
pages, is not a bad idea. Comments are defined in your style sheet using a differ-
ent convention than in your HTML pages. Look back to the sample code for the
pseudo-classes style sheet. Notice next to the hexadecimal value #FF33FF, there
is the following:

/* fuchsia */

That is a comment in CSS. Adding a comment is little trouble when you create the
style sheet; it is a lot more work to go back and remember what you meant when
you defined the style sheet. If you use comments nowhere else, use them when
you use hexadecimal notation for colors.

Comments are created with a /* preceding them and a */ following them.

From Here
- Cross- ﬂ'-_ Jump to Chapter 33 to learn about CSS positioning options
Reference

..~ Proceed to Chapter 27 and begin adding styles to your Web page.

308 PartIv O Enhancing Presentation with Cascading Style Sheets

Summary

In this chapter you learned about the basics of CSS. You learned the vocabulary,
the conventions, and differences between CSS and HTML syntax. You learned about
defining properties, grouping properties, and defining properties using shortcuts.
You learned about the CSS box model and about inheritance from containers to ele-
ments. You also learned about classes, pseudo-classes, and IDs. Finally, you learned
about using the DIV and SPAN elements to group elements so they can all take
advantage of the same formatting.

d O g

